Fuzzy Rules in Data Mining: From Fuzzy Associations to Gradual Dependencies
نویسنده
چکیده
Fuzzy rules, doubtlessly one of the most powerful tools of fuzzy logic, have not only been used successfully in established application areas like control engineering and approximate reasoning, but more recently also in the field of data mining. In this chapter, we provide a synthesis of different approaches to fuzzy association analysis, that is, the data-driven extraction of interesting patterns expressed in the form of fuzzy rules. In this regard, we highlight a specific advantage of a fuzzy in comparison to a conventional approach, namely an increased expressiveness that allows for representing patterns of interest in a more distinctive way. Therefore, we specifically focus on the modeling of a less common type of pattern, namely gradual dependencies between attributes in a data set.
منابع مشابه
Developing a Course Recommender by Combining Clustering and Fuzzy Association Rules
Each semester, students go through the process of selecting appropriate courses. It is difficult to find information about each course and ultimately make decisions. The objective of this paper is to design a course recommender model which takes student characteristics into account to recommend appropriate courses. The model uses clustering to identify students with similar interests and skills...
متن کاملOn Mining Fuzzy Classification Rules for Imbalanced Data
Fuzzy rule-based classification system (FRBCS) is a popular machine learning technique for classification purposes. One of the major issues when applying it on imbalanced data sets is its biased to the majority class, such that, it performs poorly in respect to the minority class. However many cases the minority classes are more important than the majority ones. In this paper, we have extended ...
متن کاملOn Mining Fuzzy Classification Rules for Imbalanced Data
Fuzzy rule-based classification system (FRBCS) is a popular machine learning technique for classification purposes. One of the major issues when applying it on imbalanced data sets is its biased to the majority class, such that, it performs poorly in respect to the minority class. However many cases the minority classes are more important than the majority ones. In this paper, we have extended ...
متن کاملMining Gradual Dependencies based on Fuzzy Rank Correlation
We propose a novel framework and an algorithm for mining gradual dependencies between attributes in a data set. Our approach is based on the use of fuzzy rank correlation for measuring the strength of a dependency. It can be seen as a unification of previous approaches to evaluating gradual dependencies and captures both, qualitative and quantitative measures of association as special cases.
متن کاملFuzzy Data Mining for Discovering Changes in Association Rules over Time
Association rule mining is an important topic in data mining research. Many algorithms have been developed for such task and they typically assume that the underlying associations hidden in the data are stable over time. However, in real world domains, it is possible that the data characteristics and hence the associations change significantly over time. Existing data mining algorithms have not...
متن کامل